SOLVING PAIRS OF LINEAR EQUATIONS (sec 6.2)

1. Graphing (p. 257)

- a) solve each equation for y =
- b) enter into Y_1 = and Y_2 = in calculator and graph in appropriate window
- c) Use CALC INTERSECT to find point of intersection

2. Algebraically (elimination method) (p. 258)

- a) align x terms, y terms, and constants underneath each other
- b) multiply one or both equations to make either the x coefficients or y coefficients match in number (can be opposite signs)
- c) add or subtract the corresponding terms, eliminating one variable
- d) solve for the remaining variable and substitute that in one of the equations to find the other variable

3. Special Formulas (p. 260)

a) set up equations in standard form:

$$ax + by = p$$
 any of the variables $cx + dy = q$ can be negative

b) Use these formulas:

$$x = \frac{pd - qb}{ad - bc}$$

$$y = \frac{qa - pc}{ad - bc}$$

4. Determinants (p. 261)

a) set up equations in standard form:

$$ax + by = constant$$

 $cx + dy = constant$

b) set up the four x & y coefficients in a matrix form $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ and find determinant

as ad – bc. This will be your denominator.

c)
$$x = \frac{\begin{vmatrix} const & b \\ const & d \end{vmatrix}}{\det of \ x \& y}$$

d)
$$y = \frac{\begin{vmatrix} a & const \\ c & const \end{vmatrix}}{det \text{ of } x \& y}$$

5. Matrices – Method #1 (not in book)

- a) Arrange equations in standard form as in determinants, the six numbers (four coefficients and two constants) will be put into a matrix that has 2 rows and 3 columns a 2 X 3 matrix.
- b) On calculator use: 2^{ND} MATRIX EDIT A and press enter
- c) Type in size of matrix, here it is 2 x 3, and pressing enter after each number
- d) Type in the matrix numbers by row, pressing enter after each number.
- e) Use 2^{ND} QUIT to save the matrix.
- f) Use: 2nd MATRIX MATH A:rref and press enter
- g) Use: 2nd MATRIX NAMES 1:A and press enter, then type a) and press enter. Answer appears in last column as x then y.

6. Matrices - Method #2 (page 263)

- a) Set up the coefficients only as a 2 x 2 matrix called A (see above method for
- b) Set up the constants only as a single column matrix size 2 x 1 called B.
 c) Use 2nd MATRIX NAMES to do the formula:

[A]⁻¹*[B] and solution will appear as a column with x then y